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Abstract. We develop a theoretical analysis of the performance of the regularized
least-square algorithm on a reproducing kernel Hilbert space in the supervised learn-
ing setting. The presented results hold in the general framework of vector-valued
functions; therefore they can be applied to multitask problems. In particular, we ob-
serve that the concept of effective dimension plays a central role in the definition of
a criterion for the choice of the regularization parameter as a function of the number
of samples. Moreover, a complete minimax analysis of the problem is described,
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showing that the convergence rates obtained by regularized least-squares estimators
are indeed optimal over a suitable class of priors defined by the considered kernel.
Finally, we give an improved lower rate result describing worst asymptotic behavior
on individual probability measures rather than over classes of priors.

1. Introduction

In this paper we investigate the estimation properties of the regularized least-
squares (RLS) algorithm on a reproducing kernel Hilbert space (RKHS) in the
regression setting. Following the general scheme of supervised statistical learning
theory, the available input–output samples are assumed to be drawn (independently
and identically distributed) i.i.d. according to an unknown probability distribution.
The aim of a regression algorithm is estimating a particular invariant of the un-
known distribution: the regression function, using only the available empirical
samples. Hence the asymptotic performances of the algorithm are usually eval-
uated by the rate of convergence of its estimates to the regression function. The
main result of this paper shows a choice for the regularization parameter of RLS,
such that the resulting algorithm is optimal in a minimax sense for a suitable class
of priors.

The RLS algorithm on an RKHS of real-valued functions (i.e., when the output
space is equal to R) has been extensively studied in the literature, for an account
see [33], [30], [17], and references therein. For the case X = R

d and the RKHS
a Sobolev space, optimal rates were established assuming a suitable smoothness
condition on the regression function (see [18], and references therein). For an
arbitrary RKHS and compact input space, in [5] a covering number technique
was used to obtain nonasymptotic upper bounds expressed in terms of suitable
complexity measures of the regression function (see also [33] and [37]). In [8],
[26], [9], [27] the covering techniques were replaced by estimates of integral
operators through concentration inequalities of vector-valued random variables.
Although expressed in terms of easily computable quantities the last bounds do
not exploit much information about the fine structure of the kernel. Here we show
that such information can be used to obtain tighter bounds. The approach we
consider is a refinement of the functional analytical techniques presented in [9].
The central concept in this development is the effective dimension of the problem.
This idea was recently used in [36] and [19] in the analysis of the performances
of kernel methods for learning. Indeed, in this paper we show that the effective
dimension plays a central role in the definition of an optimal rule for the choice of
the regularization parameter as a function of the number of samples.

Although the previous investigations in [8], [26], [9], [27] showed that operator
and spectral methods are valuable tools for the performance analysis of kernel-
based algorithms such as RLS, all these results failed to compare with similar
results recently obtained using entropy methods (see [10], [29]). These results
(e.g., [29, Theorem 1.3]) showed that the optimal rate of convergence is essentially
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determined by the entropy characteristic of the considered class of priors with
respect to a suitable topology induced by ρX , the marginal probability measure
over the input space. Clearly, entropy numbers, and therefore rates of convergence,
depend dramatically on ρX . However, ρX seems not to be crucial in the rates
found in [8], [26], [9], [27]. This observation was our original motivation for
taking into account the effective dimension: a spectral theoretical parameter which
quantifies some capacity properties of ρX by means of the kernel. In fact, the
effective dimension turned out to be the right parameter, in our operator analytical
framework, to get rates comparable to the ones defined in terms of entropy numbers.

Recently, various papers, [34], [1], [20], [14], have addressed the multitask
learning problem using kernel techniques. For instance, [34] employs two kernels,
one on the input space and the other on the output space, in order to represent
similarity measures on the respective domains. The underlying similarity mea-
sures are supposed to capture some inherent regularity of the phenomenon under
investigation and should be chosen according to the available prior knowledge.
On the contrary, in [1] the prior knowledge is encoded by a single kernel on the
space of input–output couples, and a generalization of standard support vector
machines is proposed. It was in [20] and [14] that, for the first time in the learn-
ing theory literature, it was pointed out that particular scalar kernels defined on
input–output couples can be profitably mapped onto operator-valued kernels de-
fined on the input space. However, to our knowledge, a thorough error analysis
for the RLS algorithm when the output space is a general Hilbert space had never
been given before. Our result fills this gap and is based on the well-known fact
(see, e.g., [25] and [3]) that the machinery of scalar positive defined kernels can
be elegantly extended to cope with vector-valued functions using operator-valued
positive kernels. An advantage of our treatment is the extreme generality of the
mathematical setting, which in fact subsumes most of the frameworks of its type
available in the literature. Here, the input space is an arbitrary Polish space and the
output space any separable Hilbert space. We only assume that the output y has
finite variance and the random variable (y −E[ y | x ]), conditionally to the input
x , satisfies a momentum condition à la Bennett (see Hypothesis 2 in Section 3).

The other characterizing feature of this paper is the minimax analysis. The first
lower rate result (Theorem 2 in Section 4) shows that the error rate attained by
the RLS algorithm with our choice for the regularization parameter is optimal on
a suitable class of probability measures. The class of priors we consider depends
on two parameters: the first is a measure of the complexity of the regression func-
tion, as in [26], the other one is related to the effective dimension of the marginal
probability measure over the input space relative to the chosen kernel; roughly
speaking, it counts the number of degrees of freedom associated to the kernel and
the marginal measure, available at a given conditioning. This kind of minimax
analysis is standard in the statistical literature but it has received less attention in
the context of learning theory (see, for instance, [17], [10], [29], and references
therein). The main issue with this kind of approach to minimax problems in statis-
tical learning is that the bad distribution in the prior could depend on the number
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of available samples. In fact, we are mainly interested in a worst-case analysis for
an increasing number of samples and a fixed probability measure. This type of
problem is well known in approximation theory. The idea of comparing minimax
rates of approximation over classes of functions with rates of approximation of
individual functions goes back to Bernstein’s problem (see [28, Sect. 2, for an his-
torical account and some examples]). In the context of learning theory this problem
was recently considered in [17, Sect. 3], where the notion of an individual lower
rate was introduced. Theorem 3 in Section 4 gives a new lower rate of this type
greatly generalizing analogous previous results.

The paper is organized as follows. In Section 2 we briefly recall the main
concepts of the regression problem in the context of supervised learning theory, [6],
[15], [23]; however, the formalism could be easily rephrased using the language
of nonparametric regression as in [17]. In particular, we define the notions of
upper, lower, and optimal uniform rates over priors of probability measures. These
concepts will be the main topic of Sections 4 and 5. In Section 3 we introduce the
formalism of operator-valued kernels and the corresponding RKHS. Moreover, we
describe the mathematical assumptions required by the subsequent developments.
The assumptions specify conditions on both the RKHS (see Hypothesis 1) and the
probability measure on the samples (see Hypothesis 2). Finally, we introduce (see
Definition 1) the class of priors that will be considered throughout the minimax
analysis.

In Section 4 we state the three main results of the paper, establishing upper
and lower uniform rates for the RLS algorithm. The focus of our exposition on
asymptotic rates, rather than on confidence analysis for finite sample size, was
motivated by the decision to stress the aspects relevant to the main topic of investi-
gation of the paper: optimality. However, all the results could be, with a relatively
small effort, reformulated in terms of a nonasymptotic confidence analysis, see
bounds (34) and (50).

The proofs of the theorems stated in Section 4 are postponed to Section 5.

2. Learning from Examples

We now introduce some basic concepts of statistical learning theory in the regres-
sion setting for vector-valued outputs (for details, see [32], [15], [24], [6], [20],
and references therein).

In the framework of learning from examples there are two sets of variables: the
input space X and the output space Y . The relation between the input x ∈ X and
the output y ∈ Y is described by a probability distribution ρ(x, y) = ρX (x)ρ(y|x)
on X ×Y , where ρX is the marginal distribution on X and ρ(·|x) is the conditional
distribution of y given x ∈ X . The distribution ρ is known only through a training
set z = (x, y) = ((x1, y1), . . . , (x�, y�)) of � examples drawn i.i.d. according to
ρ. Given the sample z, the aim of learning theory is to find a function fz : X → Y
such that fz(x) is a good estimate of the output y when a new input x is given.
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The function fz is called the estimator and a learning algorithm is the rule that,
for any � ∈ N, gives to every training set z ∈ Z � the corresponding estimator fz.

We also use the notation f�(z) or, equivalently, f �z , for the estimator, every time
we want to stress its dependence on the number of examples. For the same reason,
a learning algorithm will often be represented as a sequence { f�}�∈N of mappings
f� from Z � to the set of functions Y X .

If the output space Y is a Hilbert space, given a function f : X → Y , the ability
of f to describe the distribution ρ is measured by its expected risk,

E[ f ] =
∫

X×Y
‖ f (x)− y‖2

Y dρ(x, y).

The minimizer of the expected risk over the space of all the measurable Y -valued
functions on X is the regression function

fρ(x) =
∫

Y
y dρ(y|x).

The final aim of learning theory is to find an algorithm such that E[ fz] is close
to E[ fρ] with high probability. However, if the estimators fz are picked up from
a hypothesis space H which is not dense in L2(X, ρX ), approaching E[ fρ] is too
ambitious, and one can only hope to attain the expected error inf f ∈H E[ f ].

A learning algorithm fz which, for every distributionρ such that
∫

Y ‖y‖2
Y dρY <

+∞, achieves this goal, that is,

lim
�→+∞

Pz∼ρ�
[
E[ fz] − inf

f ∈H
E[ f ] > ε

]
= 0 for all ε > 0,

is said to be universally consistent.1

Universal consistency is an important and well-known propriety of many learn-
ing algorithms, among which is the RLS algorithm that will be introduced later.
However, if H is infinite dimensional, the rate of convergence in the limit above,
cannot be uniform on the set of all the distributions, but only on some restricted
class P defined in terms of prior assumptions on ρ. In this paper the priors2 are
suitable classes P of distribution probabilities ρ encoding our knowledge on the
relation between x and y. In particular, we consider a family of priors P(b, c) (see
Definition 1) depending on two parameters: the effective dimension of H (with

1 Various different definitions of consistency can be found in the literature (see [17], [11]): “in
probability,” “a.s.,” “weak,” and “strong.” In more restrictive settings than ours, for example, assum-
ing that ‖ fz(x)− y‖Y is bounded, it is possible to prove equivalence results between some of these
definitions (e.g., between “weak” and “strong” consistency). However, this is not true under our as-
sumptions. Moreover, our definition of consistency is weaker than analogous ones in the literature
because we replaced E[ fρ ] with inf f ∈H E[ f ] in order to deal with hypothesis spaces which are not
dense in L2(X, ρX ).

2 The concept of “prior” considered here should not be confused with its homologue in Bayesian
statistics.
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respect to ρX ) and a notion of complexity of the regression function fρ which
generalize to arbitrary RKHs the degree of smoothness of fρ , usually defined for
regression in Sobolev spaces (see [11], [30], [17], [5], [9], and references therein).

Assuming ρ in a suitably small prior P , it is possible to study the uniform con-
vergence properties of learning algorithms. A natural way to do that is considering
the confidence function (see [10], [29])

inf
f�

sup
ρ∈P

Pz∼ρ�
[
E[ f �z ] − inf

f ∈H
E[ f ] > ε

]
, � ∈ N, ε > 0,

where the infimum is over all the mappings f� : Z � → H. The learning algorithms
{ f�}�∈N attaining the minimization are optimal over P in the minimax sense. The
main purpose of this paper (accomplished by Theorems 1 and 2) is showing that, for
anyP in the considered family of priors, the RLS algorithm (with a suitable choice
of the regularization parameter) shares the asymptotic convergence properties of
the optimal algorithms.

Let us now introduce the RLS algorithm [33], [22], [6], [37]. In this framework
the hypothesis space H is a given Hilbert space of functions f : X → Y and,
for any λ > 0 and z ∈ Z �, the RLS estimator f λz is defined as the solution of the
minimizing problem

min
f ∈H

{
1

�

�∑
i=1

‖ f (xi )− yi‖2
Y + λ‖ f ‖2

H

}
.

In the following the regularization parameter λ = λ� is some function of the
number of examples �.

The first result of the paper is a bound on the upper rate of convergence for the
RLS algorithm with a suitable choice of λ�, under the assumption ρ ∈ P . That is,
we prove the existence of a sequence (a�)�≥1 such that

lim
τ→∞ lim sup

�→∞
sup
ρ∈P

Pz∼ρ�
[
E[ f λ�z ] − inf

f ∈H
E[ f ] > τa�

]
= 0. (1)

More precisely, Theorem 1 shows that there is a choice λ = λ� such that the rate
of convergence is a� = �−bc/(bc+1), where 1 < c ≤ 2 is a parameter related to the
complexity of fρ and b > 1 is a parameter related to the effective dimension ofH.

The second result shows that this rate is optimal if Y is finite dimensional. Fol-
lowing the analysis presented in [17], we formulate this problem in the framework
of minimax lower rates. More precisely, a minimax lower rate of convergence for
the class P is a sequence (a�)�≥1 of positive numbers such that

lim
τ→0

lim inf
�→+∞

inf
f�

sup
ρ∈P

Pz∼ρ�
[
E[ f �z ] − inf

f ∈H
E[ f ] > τa�

]
> 0, (2)

where the infimum is over all the mappings f� : Z � → H. The definitions of
lower and upper rates are given with respect to the convergence in probability as
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in [30], and coherently with the optimization problem inherent to the definition of
confidence function. On the contrary, in [17] convergence in expectation was con-
sidered. Clearly, an upper rate in expectation induces an upper rate in probability
and a lower rate in probability induces a lower rate in expectation.

The choice of the parameter λ = λ� is optimal over the prior P if it is possible
to find a minimax lower rate (a�)�≥1 which is also an upper rate for the algorithm
f λ�z . Theorem 2 shows the optimality for the choice of λ� given by Theorem 1.

The minimax lower rates are not completely satisfactory in the statistical learn-
ing setting. In fact, from the definitions above, it is clear that the bad distribution
(the one maximizing Pz∼ρ� [E[ f �z ]− inf f ∈H E[ f ] > τa�]) could change for differ-
ent values of the number of samples �. Instead, one would usually like to know how
the excess error, E[ f �z ] − inf f ∈H E[ f ], decreases as the number of samples grows
for a fixed probability measure inP . This type of issue is well known, and has been
extensively analyzed in the context of approximation theory (see [28, Sect. 2]). To
overcome the problem, one needs to consider a different type of lower rate: the
individual lower rate. Precisely, an individual lower rate of convergence for the
prior P is a sequence (a�)�≥1 of positive numbers such that

inf
{ f�}�∈N

sup
ρ∈P

lim sup
�→+∞

Ez∼ρ�(E[ f �z ] − inf f ∈H E[ f ])

a�
> 0, (3)

where the infimum is over the set of learning algorithms { f�}�∈N.
Theorem 3 proves an individual lower bound in expectation. However, in order

to show the optimality of the RLS algorithm in the sense of individual rates, it
remains to prove either an upper rate in expectation or an individual lower rate in
probability.

3. Notations and Assumptions

The aim of this section is to set the notations, to state and discuss the main assump-
tions we need to prove our results, and to describe precisely the class of priors on
which the bounds hold uniformly.

We assume that the input space X is a Polish space3 and the output space Y is
a real separable Hilbert space. We let Z be the product space X × Y , which is a
Polish space too.

We let ρ be the probability measure describing the relation between x ∈ X
and y ∈ Y . By ρX we denote the marginal distribution on X and by ρ(·|x) the
conditional distribution on Y given x ∈ X , both existing since Z is a Polish space,
see Theorem 10.2.2 of [12].

We state the main assumptions onH and ρ.

3 A Polish space is a separable metrizable topological space such that it is complete with respect
to a metric compatible with the topology. Any locally compact second countable space is Polish.
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Hypothesis 1. The spaceH is a separable Hilbert space of functions f : X → Y
such that:

– for all x ∈ X there is a Hilbert–Schmidt4 operator Kx : Y → H satisfying

f (x) = K ∗
x f, f ∈ H, (4)

where K ∗
x : H→ Y is the adjoint of Kx ;

– the real function from X × X to R

(x, t) �→ 〈Ktv, Kxw〉H is measurable ∀v,w ∈ Y ; (5)

– there is κ > 0 such that

Tr(K ∗
x Kx ) ≤ κ, ∀x ∈ X. (6)

Hypothesis 2. The probability measure ρ on Z satisfies the following properties:∫
Z
‖y‖2

Y dρ(x, y) < +∞, (7)

– there exists fH ∈ H such that

E[ fH] = inf
f ∈H
E[ f ], (8)

where E[ f ] = ∫
Z ‖ f (x)− y‖2

Y dρ(x, y);
– there are two positive constants �, M such that∫

Y

(
e‖y− fH(x)‖Y /M − ‖y − fH(x)‖Y

M
− 1

)
dρ(y|x) ≤ �2

2M2
(9)

for ρX -almost all x ∈ X .

We now briefly discuss the consequences of the above assumptions. If Y = R,
the operator Kx can be identified with the vector Kx 1 ∈ H and (4) reduces to

f (x) = 〈 f, Kx 〉 , f ∈ H, x ∈ X,

so thatH is an RKHS [2] with kernel

K (x, t) = 〈Kt , Kx 〉H . (10)

In fact, the theory of RKHSs can naturally be extended to vector-valued functions
[25]. In particular, the assumption that Kx is a Hilbert–Schmidt operator is useful

4 An operator A : Y → H is a Hilbert–Schmidt operator if, for some (any) basis (vj )j of Y , it
holds that Tr(A∗ A) = ∑

j
〈Avj , Avj 〉H < +∞.
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in keeping the generalized theory similar to the scalar one. Indeed, let L(Y ) be the
space of bounded linear operators on Y with the uniform norm ‖·‖L(H). In analogy
with (10), let K : X × X → L(Y ) be the (vector-valued) reproducing kernel

K (x, t) = K ∗
x Kt , x, t ∈ X.

Since Kx is a Hilbert–Schmidt operator, there is a basis (vj (x))j of Y and an
orthogonal sequence (kj (x))j of vector inH such that

Kxv =
∑

j

〈v, vj (x)〉Y kj (x), v ∈ Y,

with the condition
∑

j

∥∥kj (x)
∥∥2
H < +∞. The reproducing kernel becomes

K (x, t)v =
∑
j,m

〈kj (t), km(x)〉H〈v, vj (t)〉Y vm(x), v ∈ Y,

and (6) is equivalent to ∑
j

∥∥kj (x)
∥∥2
H ≤ κ, x ∈ X.

Remark 1. If Y is finite dimensional, any linear operator is Hilbert–Schmidt
and (4) is equivalent to the fact that the evaluation functional onH,

f �→ f (x) ∈ Y

is continuous for all x ∈ X . Moreover, the reproducing kernel K takes values
in the space of (d × d)-matrices (where d = dim Y ). In this finite-dimensional
setting the vector-valued RKHS formalism can be rephrased in terms of ordinary
scalar-valued functions. Indeed, let (vj )

d
j=1 be a basis of Y , let X̂ = X ×{1, . . . , d},

and let K̂ : X̂ × X̂ → R be the kernel

K̂ (x, j; t, i) = 〈
Ktvi , Kxvj

〉
H .

Since K̂ is symmetric and positive definite, let Ĥ be the corresponding RKHS,
whose elements are real functions on X̂ [2]. Any element f ∈ H can be identified
with the function in Ĥ given by

f (x, j) = 〈
f (x), vj

〉
Y
, x ∈ X, j = 1, . . . , d.

Moreover, the expected risk becomes

E[ f ] =
∫

Z

∑
j

〈
f (x)− y, vj

〉2
Y

dρ(x, y)

=
∑

j

∫
X×R

( f (x, j)− yj )
2 dρj (x, yj )

= d
∫

X̂×R
( f (x, j)− ξ)2 dρ̂(x, j, ξ) = d Ê[ f ],
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where ρj are the marginal distributions with respect to the projections

(x, y) �→ (x,
〈
y, vj

〉
Y
), (x, y) ∈ X × Y,

and ρ̂ is the probability distribution on X̂ × R given by ρ̂ = (1/d)
∑

j ρj . In a
similar way, the regularized empirical risk becomes

1

�

�∑
i=1

d∑
j=1

( f (xi , j)− yi, j )
2 + λ‖ f ‖2

Ĥ, yi, j = 〈yi , vj 〉Y ,

where the example (xi , yi ) is replaced by d-examples (xi , yi,1), . . ., (xi , yi,d).
However, in this scalar setting the examples are not i.i.d., so we decide to state

the results in the framework of vector-valued functions. Moreover, this does not
result in more complex proofs, the theorems are stated in a basis independent form,
and also hold for infinite-dimensional Y .

Coming back to the discussion on the assumptions. The requirement that H
is separable avoids problems with measurability and allows us to employ vector-
valued concentration inequalities. If (5) is replaced by the stronger condition

(x, t) �→ 〈Ktv, Kxw〉H is continuous ∀v,w ∈ Y,

the fact that X and Y are separable implies that H is separable, too [4]. Condi-
tions (5) and the fact that H is separable ensure that the functions f ∈ H are
measurable from X to Y , whereas (6) implies that f are bounded functions. In-
deed, (6) implies that∥∥K ∗

x

∥∥
L(H,Y ) = ‖Kx‖L(Y,H) ≤

√
Tr(K ∗

x Kx ) ≤
√
κ, (11)

and (4) gives

‖ f (x)‖Y = ∥∥K ∗
x f

∥∥
Y ≤ √

κ ‖ f ‖H , ∀x ∈ X.

Regarding the distribution ρ, it is clear that if (7) is not satisfied, then E[ f ] = +∞
for all f ∈ H and the learning problem does not make sense. If it holds, (5) and (6)
are the minimal requirements to ensure that any f ∈ H has a finite expected risk
(see item (i) of Proposition 1).

In general fH is not unique as an element ofH, but we recover uniqueness by
choosing the one with minimal norm inH.

If the regression function

fρ =
∫

Y
y dρ(y|x)

belongs to H, clearly fH = fρ . However, in general, the existence of fH is a
weaker condition than fρ ∈ H, for example, ifH is finite dimensional, fH always
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exists. Condition (8) is essential to define the class of priors for which both the
upper and lower bounds hold uniformly. Finally, (9) is a model of the noise of
the output y and it is satisfied, for example, if the noise is bounded, Gaussian, or
sub-Gaussian [31].

We now introduce some more notations we need to state our bounds. LetL2(H)
be the separable Hilbert space of Hilbert–Schmidt operators on H with scalar
product

〈A, B〉L2(H) = Tr(B∗ A)

and norm

‖A‖L2(Y ) =
√

Tr(A∗ A) ≥ ‖A‖L(H).
Given x ∈ X , let

Tx = Kx K ∗
x ∈ L(H), (12)

which is a positive operator. A simple computation shows that

Tr Tx = Tr K ∗
x Kx ≤ κ

so that Tx is a trace class operator and, a fortiori, a Hilbert–Schmidt operator.
Hence

‖Tx‖L(H) ≤ ‖Tx‖L2(H) ≤ Tr(Tx ) ≤ κ. (13)

We let T : H→ H be

T =
∫

X
Tx dρX (x), (14)

where the integral converges in L2(H) to a positive trace class operator with

‖T ‖L(H) ≤ Tr T =
∫

X
Tr Tx dρX (x) ≤ κ (15)

(see item (ii) of Proposition 1). Moreover, the spectral theorem gives

T =
N∑

n=1

tn 〈·, en〉H en, (16)

where (en)
N
n=1 is a basis of Ker T ⊥ (possibly N = +∞), 0 < tn+1 ≤ tn , with∑N

n=1 tn = Tr T ≤ κ .
We now discuss the class of priors.

Definition 1. Let us fix the positive constants M , �, R, α, and β.
Then, given 1 < b ≤ +∞ and 1 ≤ c ≤ 2, we define P = P(b, c) the set of

probability distributions ρ on Z such that:

(i) Hypotheses 2 holds with the given choice for M and � in (9);
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(ii) there is g ∈ H such that fH = T (c−1)/2g with ‖g‖2
H ≤ R;

(iii) if b < +∞, then N = +∞ and the eigenvalues of T given by (16) satisfy

α ≤ nbtn ≤ β ∀n ≥ 1, (17)

whereas if b = +∞, then N ≤ β < +∞.

The first condition ensures that the constants appearing in the bounds do not
depend on ρ, but only on P . The second condition is a measure of the complexity
of fH depending both on the conditional distribution ρ(y|x) and the marginal
distribution ρX . If H is a Sobolev space, this is related to the smoothness of fH.
About the last condition, observe that T depends only on ρX and (17) is related to
the effective dimension of the spaceH with respect to ρX . If b = +∞,H is finite
dimensional, fH always exists, and condition (ii) holds for any 1 < c ≤ 2.

Remark 2. The above conditions can be expressed in a different way. Let L2(X)
be the Hilbert space of functions from X to Y square-integrable with respect to
ρX , and denote by ‖·‖ρX

and 〈·, ·〉ρX
the corresponding norm and scalar product.

Define L K : L2(X)→ L2(X) to be the integral operator of kernel K ,

(L Kϕ)(t) =
∫

X
K (t, x)ϕ(x) dρX (x),

which is bounded by (6). Based on the polar decomposition of the inclusion map
fromH into L2(X), in [7] it is shown that

L K =
N∑

n=1

tn 〈·, ϕn〉ρX
ϕn, en = L1/2

K ϕn,

where (ϕn)
N
n=1 is a basis of (ker L K )

⊥ and L1/2
K is the square root of L K (so that

L1/2
K ϕn = t1/2

n ϕn = en). Moreover, fH = T (c−1)/2g with ‖g‖2
H ≤ R if and only if

fH = Lc/2
K ϕ with ‖ϕ‖2

ρX
≤ R.

4. Upper and Lower Rates

In this section we report the main results of the paper. We first prove an upper
bound on the expected risk for the RLS estimators. More precisely, we give a
choice for the regularization parameter λ, as a function of �, providing us with a
rate of decay of the expected risk which is uniform on the priorP(b, c). Moreover,
we obtain a minimax lower rate for P(b, c) showing that the above choice of the
parameter is optimal. Both the upper and lower rates hold in probability. Finally,
we prove an individual lower rate in expectation. The proofs are given in the next
section.
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We recall that, given λ > 0, for any � ∈ N and any training set z = (x, y) =
((x1, y1), . . . , (x�, y�)) ∈ Z �, the estimator f λz is defined as the solution of the
minimization problem

min
f ∈H

(
1

�

�∑
i=1

‖ f (xi )− yi‖2
Y + λ‖ f ‖2

H

)
, (18)

whose existence and uniqueness is well known (see item (v) of Proposition 1).

Theorem 1. Given 1 < b ≤ +∞ and 1 ≤ c ≤ 2, let

λ� =


(1/�)b/(bc+1), b < +∞, c > 1,

(log �/�)b/(b+1), b < +∞, c = 1,

(1/�)1/2, b = +∞,

(19)

and

a� =


(1/�)bc/(bc+1), b < +∞, c > 1,

(log �/�)b/(b+1), b < +∞, c = 1,

1/�, b = +∞,

(20)

then

lim
τ→∞ lim sup

�→∞
sup

ρ∈P(b,c)
Pz∼ρ� [E[ f λ�z ] − E[ fH] > τa�] = 0. (21)

The above result gives a family of upper rates of convergence for the RLS
algorithm as defined in (1). The following theorem proves that the corresponding
minimax lower rates (see (2)) hold.

Theorem 2. Assume that dim Y = d < +∞, 1 < b < +∞ and 1 ≤ c ≤ 2,
then

lim
τ→0

lim inf
�→+∞

inf
f�

sup
ρ∈P(b,c)

Pz∼ρ� [E[ f �z ] − E[ fH] > τ�−bc/(bc+1)] = 1.

The above result shows that the rate of convergence given by the RLS algorithm
is optimal when Y is finite dimensional for any 1 < b < +∞ (i.e., N = +∞) and
1 < c ≤ 2 and that it is optimal up to a logarithmic factor for c = 1.

Finally, we give a result about the individual lower rates in expectation (see (3)).

Theorem 3. Assume that dim Y = d < +∞, 1 < b < +∞ and 1 ≤ c ≤ 2.
Then, for every B > b, the following individual lower rate holds:

inf
{ f�}�∈N

sup
ρ∈P(b,c)

lim sup
�→+∞

Ez∼ρ�(E[ f �z ] − E[ fH])

�−cB/(cB+1)
> 0,

where the infimum is over the set of all learning algorithms { f�}�∈N.



344 A. Caponnetto and E. De Vito

The advantages of individual lower rates over minimax lower rates have already
been discussed in Sections 1 and 2. Here we add that the proof of the theorem above
can be straightforwardly modified in order to extend the range of the infimum to
general randomized learning algorithms, that is, algorithms whose outputs are
random variables depending on the training set. Such a generalization seems not
an easy task to accomplish in the standard minimax setting. It should also be
remarked that the condition 1 ≤ c ≤ 2 in Theorem 3 has been introduced to
keep the notations homogeneous throughout the paper, but it could be relaxed to
0 ≤ c ≤ 2.

5. Proofs

In this section we give the proofs of the three theorems stated above.

5.1. Preliminary Results

We recall some known facts without reporting their proofs.
The first proposition summarizes some mathematical properties of the RLS

algorithm. It is well known in the framework of linear inverse problems (see [13]),
and a proof in the context of learning theory can be found in [7] and, for the scalar
case, in [6].

Proposition 1. Assume Hypotheses 1 and 2. The following facts hold:

(i) For all f ∈ H, f is measurable and

E[ f ] =
∫

Z
‖ f (x)− y‖2

Y dρ(x, y) < +∞.

(ii) The minimizers fH are the solution of the following equation:

T fH = g, (22)

where T is the positive trace class operator defined by

T =
∫

X
Kx K ∗

x =
∫

X
Tx dρX (x)

with the integral converging in L2(H) and

g =
∫

X
Kx fρ(x) dρX (x) ∈ H, (23)

with the integral converging inH.
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(iii) For all f ∈ H,

E[ f ] − E[ fH] = ‖
√

T ( f − fH)‖2
H, f ∈ H. (24)

(iv) For any λ > 0, a unique minimizer f λ of the regularized expected risk

E[ f ] + λ‖ f ‖2
H

exists and is given by

f λ = (T + λ)−1g = (T + λ)−1T fH. (25)

(v) Given a training set z = (x, y) = ((x1, y1), . . . , (x�, y�)) ∈ Z �, for any
λ > 0 a unique minimizer f λz of the regularized empirical risk

1

�

�∑
i=1

‖ f (xi )− yi‖2
Y + λ‖ f ‖2

H

exists and is given by

f λz = (Tx + λ)−1gz. (26)

where Tx : H→ H is the positive finite rank operator

Tx = 1

�

�∑
i=1

Txi (27)

and gz ∈ H is given by

gz = 1

�

�∑
i=1

Kxi yi . (28)

By means of (4), T and g are explicitly given by

(T f )(x) = K ∗
x T f =

∫
X

K ∗
x (Kt K ∗

t ) f dρX (t) =
∫

X
K (x, t) f (t) dρX (t), (29)

so T acts as the integral operator of kernel K , and

g(x) = K ∗
t g =

∫
X

K (x, t) fρ(t) dρX (t). (30)

We also need the following probabilistic inequality based on a result of [21],
see also Theorem 3.3.4 of [35].

Proposition 2. Let (�,F, P) be a probability space and let ξ be a random
variable on� taking value in a real separable Hilbert spaceK. Assume that there
are two positive constants L and σ such that

E[‖ξ − E[ξ ]‖m
K] ≤ 1

2 m! σ 2Lm−2 ∀m ≥ 2, (31)
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then, for all � ∈ N and 0 < η < 1, then

P(ω1,...,ω�)∼P�

[∥∥∥∥∥1

�

�∑
i=1

ξ(ωi )− E[ξ ]

∥∥∥∥∥
K

≤ 2

(
L

�
+ σ√

�

)
log

2

η

]
≥ 1 − η. (32)

In particular, (31) holds if

‖ξ(ω)‖K ≤ L/2 a.s.

E[‖ξ‖2
K] ≤ σ 2. (33)

5.2. Upper Rates

The main steps in the proof of the upper rate of convergence given in Theorem 1
are the following.

First, given a probability distributionρ satisfying Hypothesis 2, Theorem 4 gives
an upper bound for E[ f λz ] − E[ fH] that holds in probability for any small enough
λ and any large enough � (see (35)). The bound is controlled by the following
quantities parametrized by λ > 0:

(1) The residual

A(λ) = E[ f λ] − E[ fH] = ‖
√

T ( f λ − fH)‖2
H,

where f λ ∈ H is the minimizer of the regularized expected risk (see item
(iv) of Proposition 1) and the second equality is a consequence of (24).

(2) The reconstruction error

B(λ) = ∥∥ f λ − fH
∥∥2

H .

(3) The effective dimension

N (λ) = Tr[(T + λ)−1T ],

which is finite due to the fact that T is trace class (see item (ii) of Proposi-
tion 1).

Roughly speaking, the effective dimension N (λ) controls the complexity of the
hypothesis space H according to the marginal measure ρX , whereas A(λ) and
B(λ), which depend on ρ, control the complexity of fH.

Remark 3. In the framework of learning theory A(λ) = ‖ f λ − fH‖2
ρ is called

the approximation error, whereas in inverse problems theory the approximation
error is usually

√
B(λ) = ‖ f λ − fH‖H. In order to avoid confusion we adopt the

nomenclature of inverse problems [13].
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Next, Proposition 3 studies the asymptotic behavior of the above quantities
when λ goes to zero under the assumption that ρ ∈ P(b, c). Finally, from this
result, it is easy to derive a best choice for the parameter λ = λ� giving rise to the
claimed rate of convergence.

The following theorem gives a nonasymptotic upper bound which is of interest
by itself.

Theorem 4. Let ρ satisfy Hypothesis 2, � ∈ N, λ > 0 and 0 < η < 1. Then,
with probability greater than 1 − η,

E[ f λz ] − E[ fH] ≤ Cη

(
A(λ)+ κ2B(λ)

�2λ
+ κA(λ)

�λ
+ κM2

�2λ
+ �2N (λ)

�

)
(34)

provided that

� ≥ 2CηκN (λ)
λ

and λ ≤ ‖T ‖L(H), (35)

where Cη = 32 log2(6/η).

Proof. We split the proof in several steps. Let λ, η, and � be as in the statement
of the theorem.

Step 1. Given a training set z = (x, y) ∈ Z �, (24) gives

E[ f λz ] − E[ fH] = ‖
√

T ( f λz − fH)‖2
H.

Recalling the definition of f λ, see item (iv) of Proposition 1, we split

f λz − fH = ( f λz − f λ)+ ( f λ − fH).

Now (25) and (26) give

f λz − f λ = ((Tx + λ)−1gz)− ((T + λ)−1g)

= (Tx + λ)−1{(gz − g)+ (T − Tx)(T + λ)−1g}
(Eq. (22) ) = (Tx + λ)−1{(gz − Tx fH + Tx fH − T fH)+ (T − Tx) f λ}

= (Tx + λ)−1(gz − Tx fH)+ (Tx + λ)−1(T − Tx)( f λ − fH),

where Tx ∈ L(H), gz ∈ H, and g ∈ H are given by (27), (28) and (23), respectively.
The inequality ‖ f1 + f2 + f3‖2

H ≤ 3(‖ f1‖2
H + ‖ f2‖2

H + ‖ f3‖2
H) implies

E[ f λz ] − E[ fH] ≤ 3(A(λ)+ S1(λ, z)+ S2(λ, z)), (36)

where A(λ) is the residual and

S1(λ, z) = ‖
√

T (Tx + λ)−1(gz − Tx fH)‖2
H,

S2(λ, z) = ‖
√

T (Tx + λ)−1(T − Tx)( f λ − fH)‖2
H.
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Step 2. Probabilistic bound on S2(λ, z). Clearly,

S2(λ, z) ≤ ‖
√

T (Tx + λ)−1‖2
L(H)‖(T − Tx)( f λ − fH)‖2

H. (37)

Step 2.1. Probabilistic bound on ‖√T (Tx + λ)−1‖L(H). Assume that

�(λ, z) = ‖(T + λ)−1(T − Tx)‖L(H) = ‖(T − Tx)(T + λ)−1‖L(H) ≤ 1
2 , (38)

(the second inequality holds since if A, B are self-adjoint operators in L(H), then
‖AB‖L(H) = ‖(AB)∗‖L(H) = ‖B A‖L(H)). Then the Neumann series gives

√
T (Tx + λ)−1 =

√
T (T + λ)−1(I − (T − Tx)(T + λ)−1)−1

=
√

T (T + λ)−1
+∞∑
n=0

((T − Tx)(T + λ)−1)n,

so that

‖
√

T (Tx + λ)−1‖L(H) ≤ ‖
√

T (T + λ)−1‖L(H)
+∞∑
n=0

‖(T − Tx)(T + λ)−1‖n
L(H)

≤ ‖
√

T (T + λ)−1‖L(H) 1

1 −�(λ, z)

≤ 2‖
√

T (T + λ)−1‖L(H).

The spectral theorem ensures that ‖√T (T + λ)−1‖L(H) ≤ 1/2
√
λ so that

‖
√

T (Tx + λ)−1‖L(H) ≤ 1√
λ
. (39)

We claim that (35) implies (38) with probability greater than 1 − η/3. To this aim
we apply Proposition 2 to the random variable ξ1 : X → L2(H),

ξ1(x) = (T + λ)−1Tx

so that

E[ξ1] = (T + λ)−1T and
1

�

�∑
i=1

ξ1(xi ) = (T + λ)−1Tx.

Moreover, (13) and ‖(T + λ)−1‖L(H) ≤ 1/λ imply

‖ξ‖L2(H) ≤ ‖(T + λ)−1‖L(H)‖Tx‖L2(H) ≤
κ

λ
= L1

2
.

Condition (13) ensures that Tx is of trace class and the inequality

Tr(AB) ≤ ‖A‖L(H) Tr B (40)
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(A positive bounded operator, B positive trace class operator) implies

E[‖ξ1‖2
L2(H)] =

∫
X

Tr(Tx (T
1/2
x (T + λ)−2T 1/2

x )) dρX (x)

≤
∫

X
‖Tx‖L(H) Tr((T + λ)−2Tx ) dρX (x),

((13)) ≤ κ Tr((T + λ)−2T )

= κ Tr((T + λ)−1((T + λ)−1/2T (T + λ)−1/2)),

((40)) ≤ κ‖(T + λ)−1‖L(H) Tr((T + λ)−1T )

≤ κ

λ
N (λ) = σ 2

1 ,

by definition of effective dimension N (λ). Hence, (33) of Proposition 2 holds
and (32) gives

‖(T + λ)−1(Tx − T )‖L2(H) ≤ 2 log(6/η)

(
2κ

λ�
+

√
κN (λ)
λ�

)

with probability greater than 1−η/3. Since log(6/η) ≥ 1 and the spectral decom-
position of T gives

N (λ) ≥ ‖T ‖L(H)
‖T ‖L(H) + λ

≥ 1

2
if λ ≤ ‖T ‖L(H) ,

if (35) holds, then

log(6/η)

(
2κ

λ�
+

√
κN (λ)
λ�

)
≤ 4

log2(6/η)κN (λ)
λ�

+
√

log2(6/η)κN (λ)
λ�

≤ 1
16 + 1

8 ≤ 1
4 ,

so that

�(λ, z) ≤ ‖(T + λ)−1(Tx − T )‖L2(H) ≤ 1
2 (41)

with probability greater than 1 − η/3.

Step 2.2. Probabilistic bound on
∥∥(T − Tx)( f λ − fH)

∥∥
L(H). Now we apply

Proposition 2 to the random variable ξ2 : X → H,

ξ2(x) = Tx ( f λ − fH),

so that

E[ξ2] = T ( f λ − fH),
1

�

�∑
i=1

ξ2(xi ) = Tx( f λ − fH).
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Bound (13) and the definition of B(λ) give

‖ξ2(x)‖H ≤ ‖Tx‖L(H)
∥∥ f λ − fH

∥∥
H ≤ κ

√
B(λ) = L2

2
.

Since Tx is a positive operator

〈Tx f , f 〉H ≤ ‖Tx‖L(H) 〈 f, f 〉H , f ∈ H, (42)

so that

E[‖ξ2‖2
H] =

∫
X
〈Tx T 1/2

x ( f λ − fH), T 1/2
x ( f λ − fH)〉H dρX (x)

≤
∫

X
‖Tx‖L(H) 〈Tx ( f λ − fH), f λ − fH〉H dρX (x),

((13)) ≤ κ〈T ( f λ − fH), f λ − fH〉H
= κ‖

√
T ( f λ − fH)‖2

H

= κA(λ) = σ 2
2 ,

by definition of A(λ). So (33) holds and (32) gives

‖(T − Tx)( f λ − fH)‖H ≤ 2 log(6/η)

(
2κ

√
B(λ)
�

+
√
κA(λ)
�

)
, (43)

with probability greater than 1 − η/3. Replacing (39), (43) in (37), if (35) holds,
it follows that

S2(λ, z) ≤ 8 log2(6/η)

(
4κ2B(λ)
�2λ

+ κA(λ)
�λ

)
(44)

with probability greater than 1 − 2η/3.

Step 3. Probabilistic bound on S1(λ, z). Clearly,

S1(λ, z) ≤ ‖
√

T (Tx + λ)−1(T + λ)1/2‖2
L(H)‖(T + λ)−1/2(gz − Tx fH)‖2

H. (45)

Step 3.1. Bound on ‖√T (Tx + λ)−1(T + λ)1/2‖L(H). Since
√

T (Tx+λ)−1(T+λ)1/2 =
√

T (T+λ)−1/2{I−(T+λ)−1/2(T−Tx)(T+λ)−1/2}−1,

reasoning as in Step 2.1, it follows that

‖{I − (T + λ)−1/2(T − Tx)(T + λ)−1/2}−1‖L(H) ≤ 2

provided that

‖(T + λ)−1/2(T − Tx)(T + λ)−1/2‖L(H) ≤ 1
2 . (46)
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Moreover, the spectral theorem ensures that ‖√T (T + λ)−1/2‖L(H) ≤ 1 so

‖
√

T (Tx + λ)−1(T + λ)1/2‖L(H) ≤ 2. (47)

We will show that (46) holds for the training sets z satisfying (41). Indeed, if
B = (T + λ)−1/2(T − Tx)(T + λ)−1/2, then

‖B‖2
L2(H) = Tr((T + λ)−1/2(T − Tx)(T + λ)−1(T − Tx)(T + λ)−1/2)

= Tr((T + λ)−1(T − Tx)(T + λ)−1(T − Tx))

= 〈(T + λ)−1(T − Tx), ((T + λ)−1(T − Tx))
∗〉L2(H)

≤ ‖(T + λ)−1(T − Tx)‖L2(H)‖((T + λ)−1(T − Tx))
∗‖L2(H)

= ‖(T + λ)−1(T − Tx)‖2
L2(H).

If (35) holds, then (41) ensures that (46) holds with probability 1 − 2η/3.

Step 3.2. Bound on ‖(T + λ)−1/2(gz − Tx fH)‖H. Let ξ3 : Z → H be the
random variable

ξ3(x, y) = (T + λ)−1/2 Kx (y − fH(x)).

First of all, (22) gives

E[ξ3] = (T + λ)−1/2(g − T fH) = 0

and (9) implies∫
Y
‖y − fH(x)‖m

Y dρ(y|x) ≤ 1
2 m! �2 Mm−2 for all m ≥ 2,

(see, e.g., [31]). It follows that

E[‖ξ3‖m
H] =

∫
Z
(〈K ∗

x (T + λ)−1 Kx (y − fH(x)), y − fH(x)〉Y )
m/2 dρ(x, y),

(Eq. (42)) ≤
∫

X
‖K ∗

x (T + λ)−1 Kx‖m/2
L(H)

(∫
Y
‖y − fH(x)‖m

Y dρ(y|x)
)

dρX (x)

(‖K ∗
x (T + λ)−1 Kx‖L(H) ≤ Tr(K ∗

x (T + λ)−1 Kx ))

≤ m! �2 Mm−2

2
sup
x∈X

‖K ∗
x (T + λ)−1 Kx‖(m−2)/2

L(H)

×
∫

X
Tr(T + λ)−1Tx dρX (x) ((13) and ‖(T + λ)−1‖L(H) ≤ λ−1)

≤ 1
2 m! �2 Mm−2

(√
κ

λ

)m−2

Tr[(T + λ)−1T ]

= 1
2 m! (�

√
N (λ))2

(
M

√
κ

λ

)m−2

.
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Hence (31) holds with L3 = M
√
κ/λ and σ3 = �

√
N (λ) and (32) gives that

‖(T + λ)−1/2(gz − Tx fH)‖H ≤ 2 log(6/η)

(
1

�

√
M2

κ

λ
+

√
�2N (λ)

�

)
(48)

with probability greater than 1 − η/3. Replacing (47), (48) in (45),

S1(λ, z) ≤ 32 log2(6/η)

(
κM2

�2λ
+ �2N (λ)

�

)
(49)

with probability greater than 1 − 2η/3.
Replacing bounds (44), (49) in (36),

E[ f λz ] − E[ fH] ≤ 3A(λ)

+ 8 log2(6/η)

(
4κ2B(λ)
�2λ

+ κA(λ)
�λ

+ 4κM2

�2λ
+ 4�2N (λ)

�

)
and (34) follows by bounding the numerical constants with 32.

The second step in the proof of the upper bound is the study of the asymptotic
behavior of N (λ), A(λ), and B(λ) when λ goes to zero. It is known that

lim
λ→0
A(λ) = 0,

lim
λ→0
B(λ) = 0,

lim
λ→0
N (λ) = N ,

see, e.g., [16] and [13]. However, to state uniform rates of convergence we need
some prior assumptions on the distribution ρ.

Proposition 3. Let ρ ∈ P(b, c) with 1 ≤ c ≤ 2 and 1 < b ≤ +∞, then

A(λ) ≤ λc‖T (1−c)/2 fH‖2
H

and

B(λ) ≤ λc−1‖T (1−c)/2 fH‖2
H.

Moreover, if b < +∞ (N = +∞),

N (λ) ≤ βb

b − 1
λ−1/b.

Instead, if b = +∞ (N < +∞),

N (λ) ≤ N .
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Proof. The results about A(λ) and B(λ) are standard in the theory of inverse
problems, see, for example, [16], [13] and, in the context of learning, [8].

We study N (λ) under the assumption that N = +∞ and tn ≤ β/nb. Since the
function t/(t + λ) is increasing in t ,

N (λ) =
N∑

n=1

tn
tn + λ

≤
N∑

n=1

β

β + nbλ
.

The function β/(β + xbλ) is positive and decreasing, so

N (λ) ≤
∫ ∞

0

β

β + xbλ
dx,

(τ b = xbλ) = λ−1/b
∫ +∞

0

β

β + τ b
dτ

≤ β
b

b − 1
λ−1/b,

since
∫ +∞

0 (β + τ b)−1 ≤ b/(b − 1). If N is finite, since t/(t + λ) is a decreasing
function of λ the claim follows.

We are now ready to prove the theorem.

Proof of Theorem 1. Let 1 < b ≤ +∞ and 1 ≤ c ≤ 2 be as in the statement of
the theorem. For any ρ ∈ P(b, c), Proposition 3 and Theorem 4 imply that, given
0 < η < 1, with probability greater than 1 − η it holds that

E[ f λz ] − E[ fH] ≤ Cη

(
Rλc + κ2 Rλc−2

�2
+ κRλc−1

�
+ κM2

�2λ
+ �2βb

(b − 1)�λ1/b

)
(50)

for all � ∈ N and 0 < λ ≤ ‖T ‖L(H) satisfying

� ≥ 2Cηκβb

(b − 1)λ(b+1)/b
. (51)

In the case b = +∞ the above formulas hold adopting the formal identities
λ1/b ≡ b/(b − 1) ≡ 1 and λ(b+1)/b ≡ λ.

Assume now that b < +∞ and c > 1. Given η ∈ (0, 1), let

�η ≥
(

2Cηκβb

(b − 1)

)(bc+1)/b(c−1)

(recall that c > 1). Then

�b(c−1)/(bc+1) ≥ 2Cηκβb

(b − 1)
for all � ≥ �η,
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so that, since λ� = �−b/(bc+1),

� ≥ 2Cηκβb

(b − 1)λ�(b+1)/b
for all � ≥ �η.

So, for any ρ ∈ P , bound (50) holds with λ = λ�. Since b/(bc + 1) < 1, λ�� goes
to +∞, so that

E[ f λz ] − E[ fH] ≤ CηD(λ�
c + �−1λ�

−1/b) = 2CηD�−bc/(bc+1) for all � ≥ �η,

with probability greater than 1 − η, where D is a constant depending only on R,
κ , M , � β, b, and c.

Let now τ = 2CηD and solve this equation for τ , so that

η = ητ = 6e−
√
τ/64D.

Hence

Pz∼ρ� [E[ f λ�z ] − E[ fH] > τ�−bc/(bc+1)] ≤ ητ for all � ≥ �ητ .

So that

lim sup
�→∞

sup
ρ∈P(b,c)

Pz∼ρ� [E[ f λ�z ] − E[ fH] > τ�−bc/(bc+1)] ≤ ητ .

Since limτ→+∞ ητ = limτ→+∞ 6e−
√
τ/64D = 0, the thesis follows.

Assume now b < +∞ and c = 1. Then

2Cηκβb

(b − 1)λ�(b+1)/b
= 2Cηκβb�

(b − 1) log �
,

so there is �η such that

� ≥ 2Cηκβb

(b − 1)λ�(b+1)/b
for all � ≥ �η.

Reasoning as above and taking into account that 1/�λ� goes to zero faster than λ�,
for any ρ ∈ P the bound (50) gives

E[ f λz ] − E[ fH] ≤ CηD′λ�c = CηD′�−b/(b+1) for all � ≥ �η

with probability greater than 1 − η, where D′ is a constant depending only on R,
κ , M , �, β, and b. The proof now follows reasoning as above.

The proofs for b = +∞ (N < +∞) are similar. Moreover, in this finite-
dimensional case the semi-norms ‖T (1−c)/2 f ‖H for different values of the param-
eter c are equivalent. Hence the final rates are not dependent on c.
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5.3. Minimax Lower Rate

We assume now that Y is finite dimensional with d = dim Y and N = +∞, we
fix 1 < b < +∞, 1 ≤ c ≤ 2, and M, �, R, α, β as in the definition of P(b, c).

To prove the lower bound we follow the ideas of [10]. The main steps are
the following. First, we define a family of probability distributions ρ f ∈ P(b, c)
parametrized by suitable vectors f ∈ H. Then, for all 0 < ε ≤ ε0, we construct a
finite sequence of vectors f1, . . . , fNε such that Nε ≥ eγ ε

−1/bc
and the Kullback–

Leibler information

K(ρ fi , ρ f j ) ≤ Cε, i �= j,

where γ and C depend only on P . Finally, we apply a theorem of [10] to obtain
the claimed lower bound.

We recall that the Kullback–Leibler information of two measures ρ1 and ρ2 is
defined by

K(ρ1, ρ2) =
∫

logϕ(z) dρ1(z),

where ϕ is the density of ρ1 with respect to ρ2, that is, ρ1(E) =
∫

E ϕ(z) dρ2(z) for
all measurable sets E .

In the following, we choose ρ0 ∈ P(b, c) and we let ν be its marginal measure.
Since ρ0 satisfies Hypothesis 2, the operator T has the spectral decomposition

T =
∫

X
Tx dν(x) =

+∞∑
n=1

tn〈·, en〉en, (52)

where (en)
+∞
n=1 is an orthonormal sequence inH and, since ρ0 ∈ P(b, c),

tn ≥ α

nb
, n ≥ 1.

The proposition below associates to any vector f belonging to a suitable subclass
ofH, a corresponding probability measure ρ f that belongs toP(b, c). In particular,
ρ f will have the same marginal distribution ν, so that the corresponding operator
Tρ f defined by (14) with ρX = (ρ f )X is, in fact, given by (52).

Proposition 4. Let (vj )
d
j=1 be a basis of Y . Given f ∈ H such that f = T (c−1)/2g

for some g ∈ H, ‖g‖2 ≤ R, let ρ f (x, y) = ν(x)ρ f (y|x) where

ρ f (y|x) = 1

2d L

d∑
j=1

(
(L − 〈 f, Kxvj 〉H)δy+d Lvj + (L + 〈 f, Kxvj 〉H)δy−d Lvj

)
with L = 4

√
κc R and δy±d Lvj is the Dirac measure on Y at point ∓d Lvj . Then

ρ f is a probability measure with marginal distribution (ρ f )X = ν and regression
function fρ f = f ∈ H. Moreover, ρ f ∈ P(b, c) provided that

min(M, �) ≥ 2(4d + 1)
√
κc R. (53)
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Moreover, if f ′ ∈ H such that f ′ = T (c−1)/2g′ for some g′ ∈ H, ‖g′‖2 ≤ R, then
the Kullback–Leibler information K(ρ f , ρ f ′) fulfills the inequality

K(ρ f , ρ f ′) ≤ 16

15d L2
‖
√

T ( f − f ′)‖2
H. (54)

Proof. The definition of f , (11), and (13) imply

|〈 f, Kxvj 〉H| ≤ ‖T (c−1)/2g‖H ‖Kx‖L(Y,H) ≤ κc/2
√

R = L

4
. (55)

It follows that ρ f (y|x) is a probability measure on Y and∫
Y

y dρ f (y|x) =
∑

j

〈
f, Kxvj

〉
H vj = K ∗

x f = f (x).

So that ρ f is a probability measure on Z , the marginal distribution is ν and the
regression function fρ f = f ∈ H. In particular, condition (8) holds with fH = f
and items (ii) and (iii) of Definition 1 are satisfied.

Clearly, (7) is satisfied since ρ f (y|x) has finite support. Moreover, (53) ensures

‖y − f (x)‖Y ≤ ‖y‖Y + ∥∥K ∗
x f

∥∥
Y
≤ d L +

√
κc R = (4d + 1)

√
κc R ≤ M

and

E[‖y − f (x)‖2
Y ] = 1

2d L

∑
j

(L − 〈
f, Kxvj

〉
H)(d L + 〈

f, Kxvj
〉
H)

2

+ (L + 〈
f, Kxvj

〉
H)(d L − 〈

f, Kxvj
〉
H)

2

+
(

1 − 1

d

)
‖ f (x)‖2

Y

((55)) ≤ 5
4 L2 +

(
1 − 1

d

)
κc R ≤ 4(4d + 1)κc R ≤ �2,

so that (9) is satisfied.
The proof of (54) is the same as Lemma 3.2 of [10]. We only sketch the main

steps. If ϕ = dρ f /dρ f ′ , clearly

logϕ(x,±d Lvj ) = log

(
L ± 〈

f, Kxvj
〉
H

L ± 〈
f ′, Kxvj

〉
H

)

= log

(
1 ±

〈
f − f ′, Kxvj

〉
H

L ± 〈
f ′, Kxvj

〉
H

)

≤ ±
〈
f − f ′, Kxvj

〉
H

L ± 〈
f ′, Kxvj

〉
H
,
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so that

K(ρ f ′ , ρ f ) ≤ 1

2d L

d∑
j=1

∫
X

(〈
f − f ′, Kxvj

〉
H

L + 〈
f ′, Kxvj

〉
H
(L + 〈 f, Kxvj 〉H)

+
〈− f + f ′, Kxvj

〉
H

L − 〈
f ′, Kxvj

〉
H
(L − 〈

f, Kxvj
〉
H)

)
dν(x)

= 1

d

d∑
j=1

∫
X

(
〈
f − f ′, Kxvj

〉
H)

2

L2 − (
〈
f ′, Kxvj

〉
H)

2
dν(x)

((55)) ≤ 1

2d

d∑
j=1

∫
X

〈
f − f ′, Kxvj

〉2
H

16

15L2
dν(x)

= 16

15d L2

∫
X

∥∥K ∗
x ( f − f ′)

∥∥2
Y

dν(x)

= 16

15d L2

∫
X

〈
Tx ( f − f ′), f − f ′〉

H dν(x)

= 16

15d L2

〈
T ( f − f ′), f − f ′〉

H .

Proposition 5. There is an ε0 > 0 such that for all 0 < ε ≤ ε0, there exist
Nε ∈ N and f1, . . . , fNε ∈ H (depending on ε) satisfying:

(i) for all i = 1, . . . , Nε, fi = T (c−1)/2gi for some gi ∈ H with ‖gi‖2
H ≤ R;

(ii) for all i, j = 1, . . . , Nε,

ε ≤ ‖
√

T ( fi − f j )‖2
H ≤ 4ε; (56)

(iii) there is a constant γ depending only on R and α such that

Nε ≥ e γ ε
−1/bc

. (57)

Proof. Let m ∈ N such that m > 16 and σ1, . . . , σN ∈ {1,−1}m given by
Proposition 6 so that

m∑
n=1

(σ n
i − σ n

j )
2 ≥ m, (58)

N ≥ em/24. (59)

In the following we will choose m as a function of ε is such a way that the statement
of the proposition will be true.

Given ε > 0, for all i = 1, . . . , Nε, let

gi =
m∑

n=1

√
ε

mtc
n

σ n
i en,
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(see (52)). Since tnnb ≥ α, then

‖gi‖2
H =

m∑
n=1

ε

mtc
n

≤ ε

m

m∑
n=1

(
nb

α

)c

≤ Cεmbc,

where here and in the following C is a constant depending only on R, α, b, and c.
Hence ‖gi‖2 ≤ R provided that

εmbc ≤ R

C

and we let m = mε ∈ N be

m = �C ′ε−1/bc� (60)

for a suitable constant C ′ > 0 (where �x� is the greatest integer less than or equal
to x .) Clearly, since mε goes to +∞ if ε goes to 0, there is ε0 such that mε > 16
for all ε ≤ ε0.

Let now fi = T (c−1)/2gi , as in the statement of the theorem, then

‖
√

T ( fi − f j )‖2
H = ‖T

c
2 (gi − gj )‖2

H =
m∑

n=1

ε

m
(σ n

i − σ n
j )

2.

The conditions (58) and (σ n
i − σ n

j )
2 ≤ 4 imply

ε ≤ ‖
√

T ( fi − f j )‖2
H ≤ 4ε

and (59) and (60) ensure

Nε ≥ em/24 ≥ e γ ε
−1/bc

for a suitable constant γ > 0.

The proof of the above proposition relies on the following result regarding
packing numbers over sets of binary strings.

Proposition 6. For every m > 16 there exist N ∈ Nandσ1, . . . , σN ∈ {−1,+1}m

such that

m∑
n=1

(σ n
i − σ n

j )
2 ≥ m, i �= j, i = 1, . . . , N ,

N ≥ em/24,

where σi = (σ 1
i , . . . , σ

m
i ) and σj = (σ 1

j , . . . , σ
m
j ).
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Proof. We regard the vectors σ ∈ {−1,+1}m as a set of m i.i.d. binary random
variables distributed according to the uniform distribution 1/2(δ−1 + δ+1).

Let σ and σ ′ be two independent random vectors in {−1,+1}m , then the real
random variable

d(σ, σ ′) =
m∑

n=1

(σ n
i − σ n

j )
2 =

m∑
n=1

θn,

where θn are independent random variables distributed according to the measure
1/2(δ0 + δ4). The expectation value d(σ, σ ′) is 2m and the Hoeffding inequality
ensures that, for every δ > 0,

P[|d(σ, σ ′)− 2m| > δ] ≤ 2 exp

(
− δ2

8m

)
.

Setting δ = m in the inequality above, we obtain

P[d(σ, σ ′) < m] ≤ 2 exp
(
−m

8

)
. (61)

Now draw N := �em/24 (where �x is the lowest integer greater than x) indepen-
dent random points σi (i = 1, . . . , N ).

From inequality (61), by union bound it holds that

P
[∃ 1 ≤ i, j ≤ N , i �= j, with d(σi , σj ) < m

]
≤ (N 2 − N ) exp

(
−m

8

)
≤ N 2 − N

(N − 1)3
= N

(N − 1)2
< 1,

since the definition of N and the assumption m > 16 imply that (N −1)2 > N and
(N − 1)3 < exp m/8. It follows that there exists at least a sequence (σ1, . . . , σN )

such that d(σi , σj ) ≥ m for all i �= j and N > exp m/8.

The following theorem is a restatement of Theorem 3.1 of [10] in our setting.

Theorem 5. Assume (53) and consider an arbitrary learning algorithm z �→
f �z ∈ H, for � ∈ N and z ∈ Z �. Then, for all ε ≤ ε0 and for all � ∈ N, there is a
ρ∗ ∈ P(b, c) such that fρ∗ ∈ H and it holds that

Pz∼ρ�∗
[
Eρ∗ [ f �z ] − Eρ∗ [ fρ∗ ] >

ε

4

]
≥ min

{
N ∗
ε

N ∗
ε + 1

, η̄
√

N ∗
ε e−4�ε/15dκc R

}
,

where N ∗
ε = eγ ε

−1/bc
and η̄ = e−3/e.

Proof. The proof is the same as in [10]. Given ε ≤ ε0, let Nε and f1, . . . , fNε
be as in Proposition 5. According to Proposition 4, let ρi = ρ fi . Assumption (53)
ensures that ρi ∈ P(b, c).
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Observe that, since all the measures ρi have the same marginal distribution ν
and fH = fρi = fi ,

Eρi [ f ] − Eρi [ fρi ] = ‖
√

T ( f − fi )‖2
H =

∫
X
‖ fi (x)− f (x)‖2

Y dν(x).

Given � ∈ N, let

Ai =
{

z ∈ Z � | ‖
√

T ( f �z − fi )‖2
H <

ε

4

}
for all i = 1, . . . , Nε. The lower bound of (56) ensures that Ai ∩ Aj = ∅ if i �= j ,
so that Lemma 3.3 of [10] ensures that there is ρ∗ = ρi∗ such that either

p∗ = Pρ�∗ [Ai∗ ] >
Nε

Nε + 1
≥ N ∗

ε

N ∗
ε + 1

(since x/(x + 1) is an increasing function and (57) holds) or, replacing the upper
bound of (56), in Eq. 3.12 of [10],

4�ε

15dκc R
≥ −log p∗ + log(

√
N )− 3

e
≥ −log p∗ + log(

√
N ∗
ε )−

3

e

since (57). Solving for p∗, the thesis follows.

The proof of Theorem 2 is now an easy consequence of the above theorem.

Proof of Theorem 2. Since whenever a minimax lower rate holds over a prior, it
holds a fortiori over a superset of it, without loss of generality we can assume

R ≤ min(M, �)

2(4d + 1)
√
κc
,

hence enforcing condition (53).
Given τ > 0 for all � ∈ N, let ε� = τ�−bc/(bc+1). Since ε� goes to 0 when �

goes to +∞, for � large enough ε� ≤ ε0, so Theorem 5 applies ensuring

inf
f�

sup
ρ∈P(b,c)

Pz∼ρ�∗

[
E[ f �z ] − E[ fH] >

τ√
2
�−bc/(bc+1)

]

≥ min

{
N ∗
ε�

N ∗
ε�
+ 1

, η̄e(C1τ
−1/bc−C2τ)�

1/bc+1)

}
,

where C1, C2 are positive constants independent of τ and �. If � goes to ∞,
N ∗
ε�
/(N ∗

ε�
+ 1) goes to 1, whereas, if τ is small enough, the quantity C1τ

−1/bc−C2τ

is positive, so that

lim
τ→0

lim inf
�→+∞

inf
f�

sup
ρ∈P(b,c)

Pz∼ρ�
[
E[ f �z ] − E[ fH] >

τ√
2
�−bc/(bc+1)

]
= 1.
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5.4. Individual Lower Rate

The proof of Theorem 3 is based on the similar result in [17, see Theorem 3.3].
Here that result is adapted to the general RKHS setting.

First of all we recall the following proposition, whose proof can be found in
[17, Lemma 3.2, p. 38].

Proposition 7. Let g ∈ R
� and s a {+1,−1}-valued random variable with

P [s = +1] = P [s = −1] = 1
2 . Moreover, let n = (ni )

�
i=1 be � independent ran-

dom variables distributed according to the Gaussian with zero mean and variance
σ 2, independent of s. Set

y = sg + n,

then the error probability of the Bayes decision for s based on y is

min
D:R�→{+1,−1}

P [D(y) �= s] = �

(
−‖g‖
σ

)
,

where � is the standard normal distribution function.

Proof of Theorem 3. Let us reason for a fixed B > b, and let ε := (B −b)c > 0.
We first define the subsetP ′ ofP(b, c), then prove the lower rate on this subset.

As in the proof of the minimax lower rate, we fix an arbitrary ρ0 ∈ P(b, c) and
let ν be its marginal measure. For every sequence s = (sn)n∈N ∈ {+1,−1}∞, we
define a corresponding function inH,

m(s) :=
+∞∑
n=1

sn

√
t−1
n γnen =

+∞∑
n=1

sngn,

where

γn := n−(bc+ε+1) ε

ε + 1
αc R, gn :=

√
t−1
n γnen,

where we recall that (tn)n∈N and (en)n∈N are the eigenvalues and eigenvectors of
the operator T defined by (52).

We define P ′ to be the set of probability measures ρ which fulfill the following
two conditions:

• the marginal distribution ρX is equal to ν; and
• there is s ∈ {+1,−1}∞ such that, for all x ∈ X , the conditional distribution

of y given x ,

ρ(y|x) = N (m(s)(x), σ 2 Id),

that is, the multivariate normal distribution on Y with mean m(s)(x) and
diagonal covariance σ 2 Id with

σ 2 = min

(
M2

2
,

πd/2�2

4Sd
∫ +∞

0 e−z2+z zd+1 dz

)
,
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and Sd is the volume of the surface of the d-dimensional unit radius sphere.

It is simple to check that P ′ ⊂ P(b, c). Indeed, clearly fρ = fH = m(s) and

‖T −(c−1)/2m(s)‖2
H =

+∞∑
n=1

t−(c−1)
n t−1

n γn =
+∞∑
n=1

(
α

nbtn

)c

n−(1+ε) ε

ε + 1
R

≤
+∞∑
n=1

n−(1+ε) ε

ε + 1
R

≤
(∫ +∞

1
t−(1+ε) dt + 1

)
ε

ε + 1
R = R,

where we used the lower bound (17). Moreover, N (0, σ 2 Id) fulfills the moment
condition (9) in Hypothesis 2. Indeed,∫

Y

(
e‖y− fH(x)‖Y /M − ‖y − fH(x)‖Y

M
− 1

)
ρ(y|x)

= (2πσ 2)−d/2Sd
∫ +∞

0

(
ez/M − z

M
− 1

)
e−z2/2σ 2

zd−1 dz

= π−d/2Sd
∫ +∞

0
e−z2

zd−1
+∞∑
k=2

1

k

(√
2zσ

M

)k

dz

≤ 2σ 2

M2
π−d/2Sd

∫ +∞

0
ez(

√
2σ/M)e−z2

zd+1 dz ≤ σ 2

2M2
.

We now are left with proving the lower bound on the reduced set P ′ by showing
the inequality

inf
{ f�}�∈N

sup
ρ∈P ′

lim sup
�→+∞

Ez∼ρ�(E[ f �z ] − E[m(s)])

�−Bc/(Bc+1)
> 0. (62)

Since (en)n∈N is an orthonormal sequence inH, then for any s it holds that

E[ f �z ] − E[m(s)] = ‖
√

T ( f �z − m(s))‖2
H =

+∞∑
n=1

(cz,n − sn)
2γn, (63)

with

cz,n =
√

tn
γn

〈
f �z , en

〉
H .

Now let c̃z,n be 1 if cz,n ≥ 0 and −1 otherwise. Because of the straightforward
inequality

2|cz,n − sn| ≥ |c̃z,n − sn|, (64)
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from (63) we get

E[ f �z ] − E[m(s)] ≥
+∞∑
n=1

1
4 (c̃z,n − sn)

2γn

=
+∞∑
n=1

I{c̃z,n �=sn}γn ≥
∑
n∈D�

I{c̃z,n �=sn}γn,

where the set D� is defined by

D� := {n ∈ N | �γn ≤ 1}.

Note that due to (64) and defining the quantity

R�(s) :=
∑
n∈D�

Pz∼ρ� [c̃z,n �= sn]γn ≤
∑
n∈D�

γn, (65)

from (62) we are led to prove the inequality

inf
{ f�}�∈N

sup
s∈{+1,−1}∞

lim sup
�→+∞

R�(s)
�−Bc/(Bc+1)

> 0. (66)

This result is achieved considering a suitable probability measure over the set
{+1,−1}∞ (and hence over P ′ itself), and proving that the inequality above holds
true not just for the worst s, but also on average. Then let us introduce the sequence
S = (Si )i∈N of independent {+1,−1}-valued random variables with

P[Si = +1] = P[Si = −1] = 1
2 for all i ∈ N.

The plan is first to show that (66) is a consequence of the inequality

ER�(S) ≥ C
∑
n∈D�

γn, C > 0, (67)

and subsequently proving that indeed (67) is true for some C > 0.
Defining the constants u := [ε/(ε + 1)]αc R and v := [(1/2Bc)]u−Bc/(Bc+1),

the definition of γn gives∑
n∈D�

γn =
∑

n≥(u�)1/(bc+1+ε)
un−(bc+1+ε)

≥
∫ +∞

(u�)1/(bc+1+ε)
t−(bc+1+ε) dt − �−1

= 1

Bc
(u�)−Bc/(Bc+1) − �−1 ≥ 1

2Bc
(u�)−Bc/(Bc+1)

= v�−Bc/(Bc+1), (68)
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where the last inequality holds for all � ≥ 2Bc(2Bcu)Bc.
Then using inequalities (67) and (68) we get

inf
f�

sup
s∈{+1,−1}∞

lim sup
�→+∞

R�(s)
�−Bc/(Bc+1)

≥ Cv inf
f�

sup
s∈{+1,−1}∞

lim sup
�→+∞

R�(s)
ER�(S)

≥ Cv inf
f�
E lim sup

�→+∞

R�(S)
ER�(S)

≥ Cv inf
f�

lim sup
�→+∞

E

(
R�(S)
ER�(S)

)
= Cv > 0,

where in the last estimate we applied the Fatou lemma, recalling that by inequali-
ties (65) and (67) the sequence

R�(s)
ER�(s)

is uniformly bounded for every s ∈ {+1,−1}∞.
As planned we finally proceed proving inequality (67). Recall that by definition

ER�(S) =
∑
n∈D�

P[c̃z,n �= Sn]γn,

where c̃z,n can be interpreted as a decision rule for the value of Sn given z. The
least error probability for such a problem is attained by the Bayes decision c̄z,n

which outputs 1 if P[Sn = 1 | z] ≥ 1
2 and −1 otherwise, therefore

P[c̃z,n �= Sn] ≥ P[c̄z,n �= Sn].

Since by construction Sn is independent of the X component of the data z, we can
reason conditionally on (xi )

�
i=1. The dependence of the Y component of z on Sn

has the form

yi = m(s)(xi )+ ni = Sngn(xi )+ ni +
∑
k �=n

Sk gk(xi ), i = 1, . . . , �,

with ni independent Y -valued random variables distributed according to the Gaus-
sian N (0, σ 2 Id). Hence it is clear that also the component of yi perpendicular
to gn(xi ) is independent of Sn . Consequently, the only dependence of z on Sn is
determined by the longitudinal components

y′
i := 〈yi , gn(xi )〉Y

‖gn(xi )‖Y
= Sn‖gn(xi )‖Y + n′

i + hi , (69)

where n′
i are real-valued random variables distributed according to the Gaussian

N (0, σ 2) and

hi =
∑
k �=n

Sk
〈gk(xi ), gn(xi )〉Y

‖gn(xi )‖Y
.
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From equation (69) we see that the structure of the data available to the Bayes
rule c̄z,n for Sn is similar to that assumed in Proposition 7, except for the presence
of the term h = (hi )

�
i=1. However, this term is independent of Sn , and it is clear

that the Bayes error cannot decrease when such a term is added to the available
data, in fact,

min
D:R�→{+1,−1}

P[D(g + h) �= Sn] = min
D:R�→{+1,−1}

EhP [D(g + h) �= Sn | h]

≥ Eh min
D:R�→{+1,−1}

P[D(g + h) �= Sn | h]

= Eh min
D:R2�→{+1,−1}

P[D(g,h) �= Sn]

= min
D:R�→{+1,−1}

P[D(g) �= Sn],

where the last equality derives from the independence of h on Sn and we let
g = (‖gn(xi )‖Y )

�
i=1.

Hence, by Proposition 7,

P[c̄z,n �= Sn | (xi )i ] = min
D:R�→{+1,−1}

P[D(g + h) �= Sn | (xi )i ]

≥ min
D:R�→{+1,−1}

P[D(g) �= Sn | (xi )i ]

= �

−
√∑

i ‖gn(xi )‖2
Y

σ 2

 .
Moreover, since �(−√

x) is convex, by Jensen’s inequality

P
[
c̄z,n �= Sn

] ≥ E�

−
√∑

i ‖gn(xi )‖2
Y

σ 2


≥ �

(
− 1

σ

√
E

∑
i

‖gn(xi )‖2
Y

)
= �

(
− 1

σ

√
�γn

)
,

where we used

E‖g(x)‖2
Y =

∫
X

〈
K ∗

x gn, K ∗
x gn

〉
Y

dν(x) = 〈T gn, gn〉H = γn.

Thus

ER�(S) ≥
∑
n∈D�

�

(
− 1

σ

√
�γn

)
γn

≥ �

(
− 1

σ

) ∑
n∈D�

γn,

which finally proves inequality (67) with C = �(−1/σ), and concludes the
proof.
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6. Conclusion

We presented an error analysis of the RLS algorithm on RKHS for general operator-
valued kernels. The framework we considered is extremely flexible and generalizes
many settings previously proposed for this type of problem. In particular, the output
space need not be bounded as long as a suitable moment condition for the output
variable is fulfilled, and input spaces which are unbounded domains are dealt with.
An asset of working with operator-valued kernels is the extension of our analysis
to the multitask learning problem; this kind of result is, to our knowledge, new.

We also gave a complete asymptotic worst-case analysis for the RLS algorithm
in this setting, showing optimality in the minimax sense on a suitable class of priors.
Moreover, we extended previous individual lower rate results to our general setting.

Finally, we stress the central role played by the effective dimension in our
analysis. It enters in the definition of the priors and in the expression of the non-
asymptotic upper bound given by Theorem 4 in Subsection 5.1. However, since
the effective dimension depends on both the kernel and the marginal probability
distribution over the input space, our choice for the regularization parameter de-
pends strongly on the marginal distribution. This consideration naturally raises the
question of whether the effective dimension could be estimated by unlabeled data,
allowing in this way the regularization parameter to adapt to the actual marginal
distribution in a semisupervised setting.
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